import numpy as np from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression import tensorflow as tf
Sample input
input_data = {'user_id': 1, 'click': 0}
GBDT + Logistic Regression
gbdt = GradientBoostingClassifier() gbdt.fit(X, y)
lr = LogisticRegression() lr.fit(X, y)
gbdt_pred = gbdt.predict_proba([input_data])[0][1] lr_pred = lr.predict_proba([input_data])[0][1]
print("GBDT + LR Prediction:", (gbdt_pred + lr_pred)/2)
Neural network with feature interaction modules
Defining model architecture...
nn_model = # nn_model
nn_pred = nn_model.predict([input_data])[0][0]
print("Neural Network Prediction:", nn_pred)
Ensemble model
model_1 = # dcnn model model_2 = # transformer model
def ensemble_model(input): out1 = model_1(input) out2 = model_2(input)
return 0.6out1 + 0.4out2
ens_pred = ensemble_model([input_data]) print("Ensemble Prediction:", ens_pred)
Created on 2/24/2024